Deep Learning - Tools and Platforms for Today and Tomorrow

Werner Scholz, 15 Aug. 2017 XENON Systems, CTO and Head of R&D werners@xenon.com.au

XENON SYSTEMS – WHO WE ARE

XENON SOLUTIONS

XENON server solutions

Performance and Reliability for the most demanding graphics, engineering, digital arts workloads.

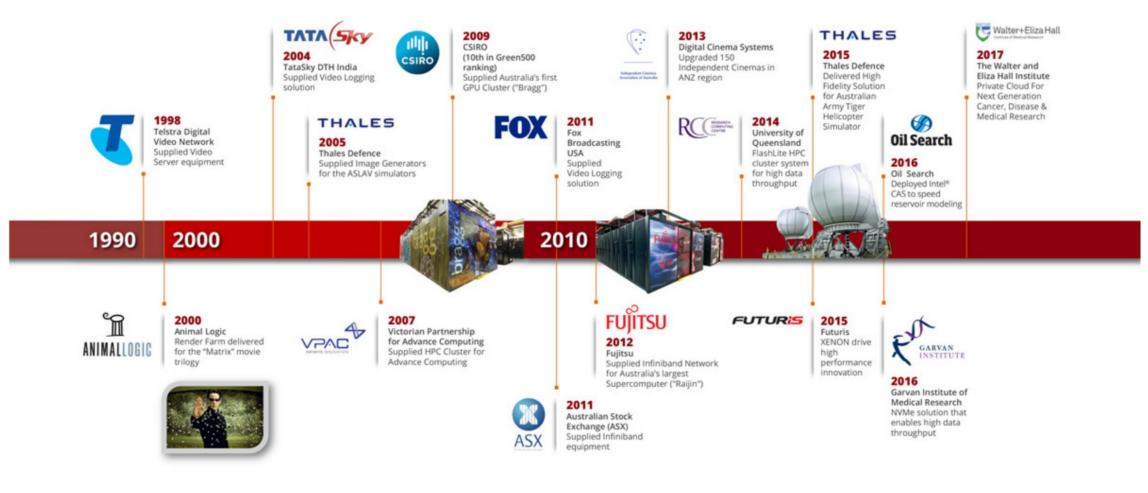
GPU Computing

High performance **acceleration solutions** leveraging NVIDIA Tesla technology and the CUDA ecosystem

Virtualisation

End-to-end virtualisation solutions for compute, storage, networking, and desktop.

Storage


High performance parallel file systems, e.g. IBM Spectrum Scale

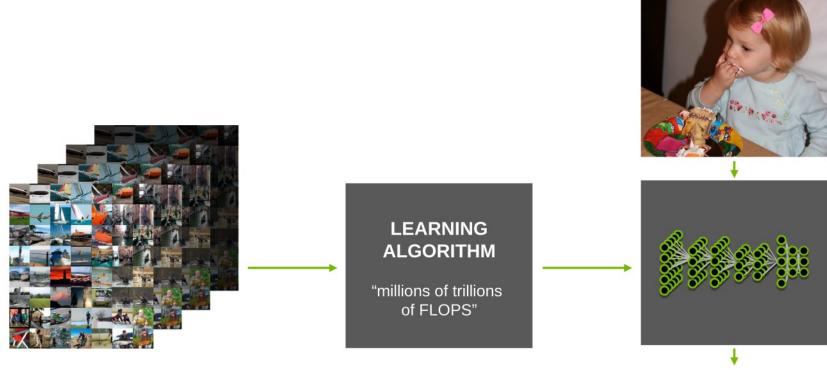
Networking

High performance Infiniband and Ethernet solutions


XENON SYSTEMS – HISTORY

CSIRO GPU CLUSTER "BRAGG"

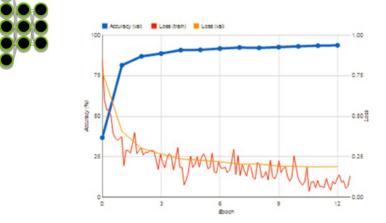
Designed and delivered by XENON Systems


- 128 nodes
- 384x NVIDIA Tesla K20 GPUs
 (384 GPUs = 958,464 Thread Processors)
- 2048 CPU cores
- 16.4TB System Memory
- InfiniBand Interconnect FDR10 40Gb/s
- Linpack Result: 335Tflops (Double Precision)
- #260 in Top500 and #10 in Green500 (in 2013)

DEEP LEARNING — A NEW COMPUTING MODEL

"Software that writes software"

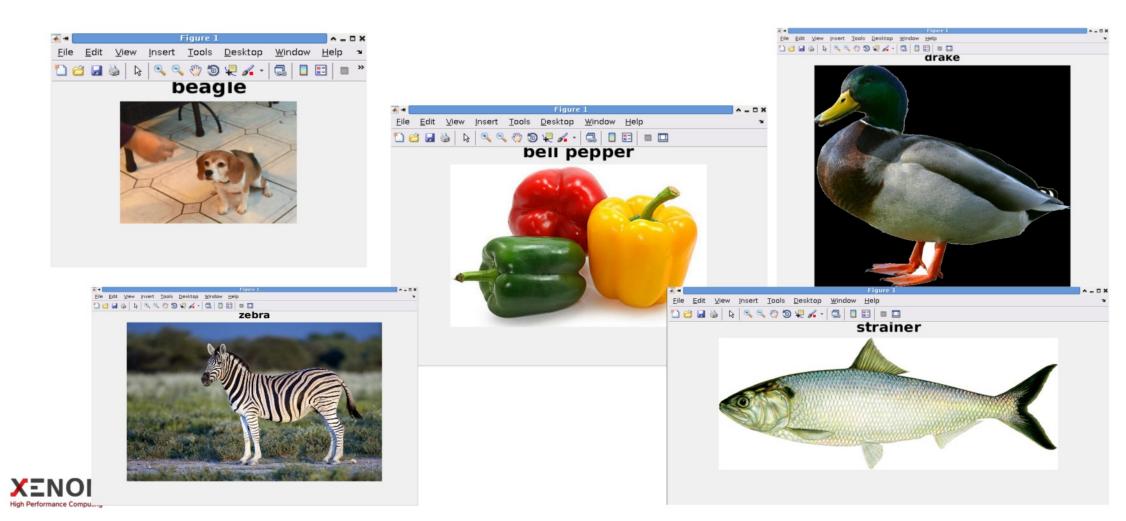
"little girl is eating piece of cake"


OBJECT RECOGNITION

... in 7 Lines of Code

- Design a Deep Neural Network
- Train the network
- Present new images to the network
- Be prepared to be surprised...

Every network is only as good as its training.



WHAT'S IN AN IMAGE?

An image says more than a thousand words...but what does it say?

WHAT'S IN AN IMAGE?

WHAT IS REQUIRED?

- System with NVIDIA GPU
- OS (Ubuntu 14.04 is a commonly used platform)
- NVIDIA drivers
- NVIDIA cuDNN library
- MatConvNet library: MATLAB toolbox implementing Convolutional Neural Networks (CNNs) for computer vision applications
- MATLAB and a little bit of MATLAB code...

OBJECT RECOGNITION ...in 7 lines of MATLAB Code

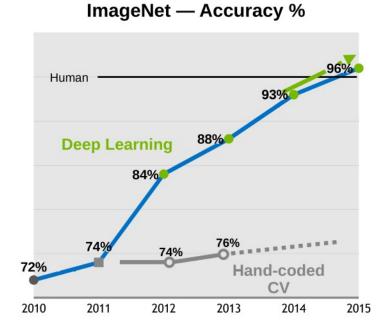
% Download pretrained network from MatConvNet repository

urlwrite('http://www.vlfeat.org/matconvnet/models/imagenet-vgg-f.mat', 'imagenet-vgg-f.mat');

% Load the network cnnModel.net = load('imagenet-vgg-f.mat');

% Set up MatConvNet run(fullfile('/opt/matconvnet-1.0-beta20','matlab','vl_setupnn.m'));

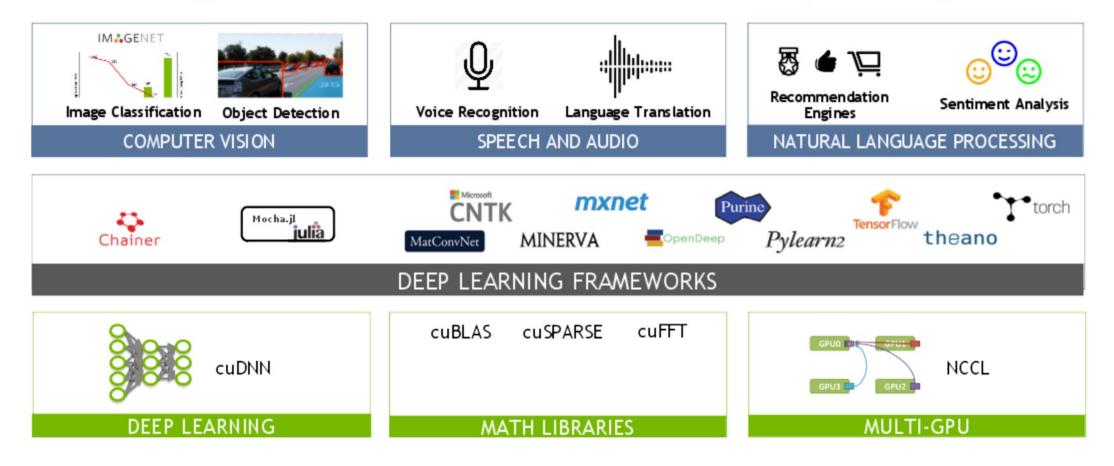
% choose a test image and display it


im='pet_images/bell-peppers.jpg';
imshow(im);

% Predict its content using ImageNet trained vgg-f CNN model label = cnnPredict(cnnModel,img); title(label,'FontSize',20)

Ref: https://devblogs.nvidia.com/parallelforall/deep-learning-for-computer-vision-with-matlab-and-cudnn/

"SUPERHUMAN" RESULTS SPARK HYPERSCALE ADOPTION



Cloud Services with AI Powered by NVIDIA

ACCELERATED DEEP LEARNING TOOLS

High Performance GPU-Acceleration for Deep Learning

DEEP LEARNING PLATFORMS - OVERVIEW

Workloads

- Dev and Test
- Training
- Inference

Technologies

- CPU
- GPU
- GPUs for DL (Tensor Cores), single prec., half prec.
- FPGA
- ASICS: TPU, etc.

On-premise

- GPU servers: IBM 822SL: Power8 + P100 + NVLINK
- PowerAl

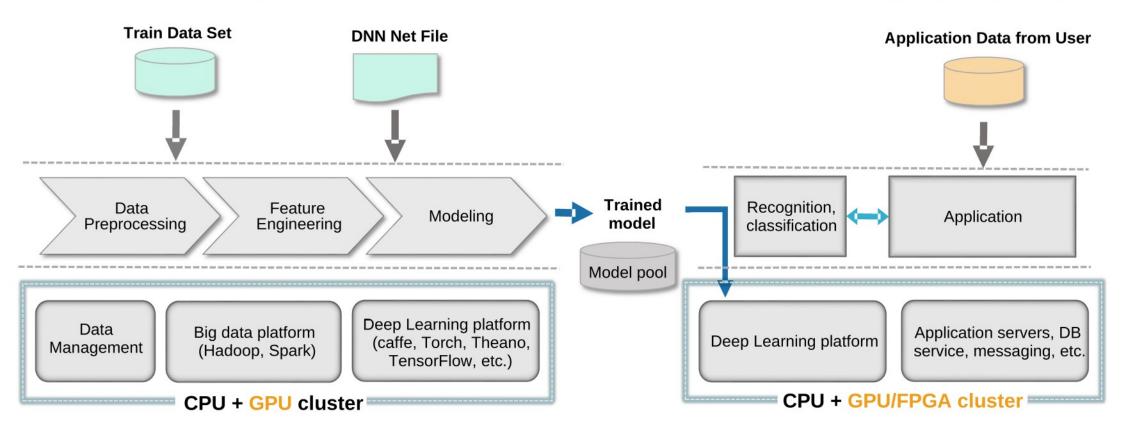
Cloud

- CPU, GPU, FPGA instances
- HWaaS: Softlayer
- DLaaS: Watson, "Tensorflow"aaS

New Services

- Alvision
- DLInsight

Future


- CPU, GPU, FPGA instances
- Power9 + V100 + NVLINK2

TRAINING AND INFERENCE

Training (development) Stage

Inference (deployment) Stage

Ref: GTC 2017: Yonghua Lin (IBM Research): VisionBrain: Deep Learning Platform for Customized Visual Recognition in Cloud

DATA PREPARATION AND TRAINING

Training

- Data intensive: historical data sets
- **Resource intensive:** Input data sets need to be prepared for training
- Compute intensive: 100% accelerated
- **Development intensive:** Optimise the model for efficiency and size (possibly for deployment in much smaller devices on the edge)

Data prep

- Data storage
- Data labelling/classification
- Data trim/crop/resize/transform/trans code

Network design/optimisation

- Prebuilt networks
- Pretrained networks
- Optimisation

Training

- Data ingest
- Training
- Convergence visualisation, test
- Network export

On-premise

IBM S822LC ("Minsky")

Cloud

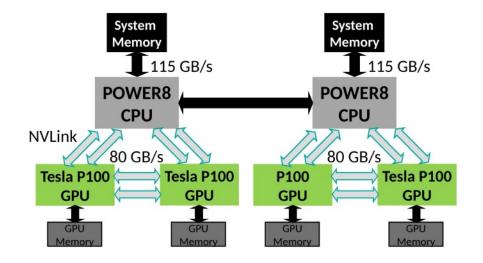
- CPU, GPU, FPGA instances
- IBM Bluemix
- HWaaS: IBM Softlayer
- DLaaS: Watson,
 "Tensorflow"aaS

New Services

Alvision

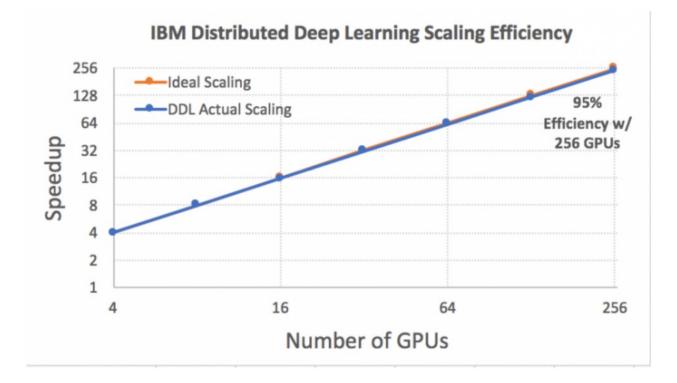
Future

 IBM Power9 + NVIDIA V100 + NVLINK2



Higher Performance with Power8 CPU-P100 GPU NVLink

Minsky (S822LC for HPC): Recommended configuration for PowerAI


- 2 Socket, 4 GPU System with NVLink
- 2 POWER8 with NVLink
- Up to 1 TB System Memory
- 4 NVIDIA Tesla P100 GPUs
- 2 SSD storage devices
- High-speed interconnect (IB or Ethernet, depending on infrastructure)

- PowerAl leverages NVLink between CPUs and GPUs to enable fast memory access to large data sets in system memory
- Two NVLink connections between each GPU and CPU-GPU leads to faster data exchange
- Large NN models benefit the most

DISTRIBUTED DEEP LEARNING

Performance Computing

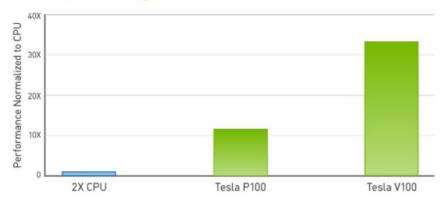
Accelerate training by scaling out:

• 16 days on 1x S822LC

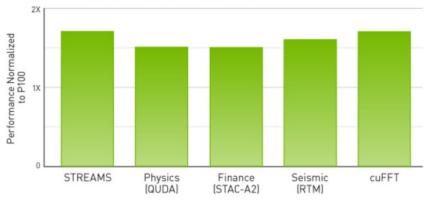
Parallel run

- 64 servers S822LC
- Infiniband fabric
- 256 NVIDIA P100 GPU accelerators
- Distributed Deep Learning (DDL) library
- ImageNet-1K data set using a ResNet-50 model
- 16 days reduced to 7 hours (60.6x speedup): 95% efficiency
- ImageNet-22K data set using a ResNet-101 model
- 84% efficiency

- TSMC 12nm FINFET process
- 21 Billion transistors
- >5000 compute units
- 15 TFLOPS DP
- 640 Tensor Cores
- 120 TFlops tensor operations
- 20MB register file
- 16MB cache
- 900 GB/s memory bandwidth
- 300 GB/s NVLINK2

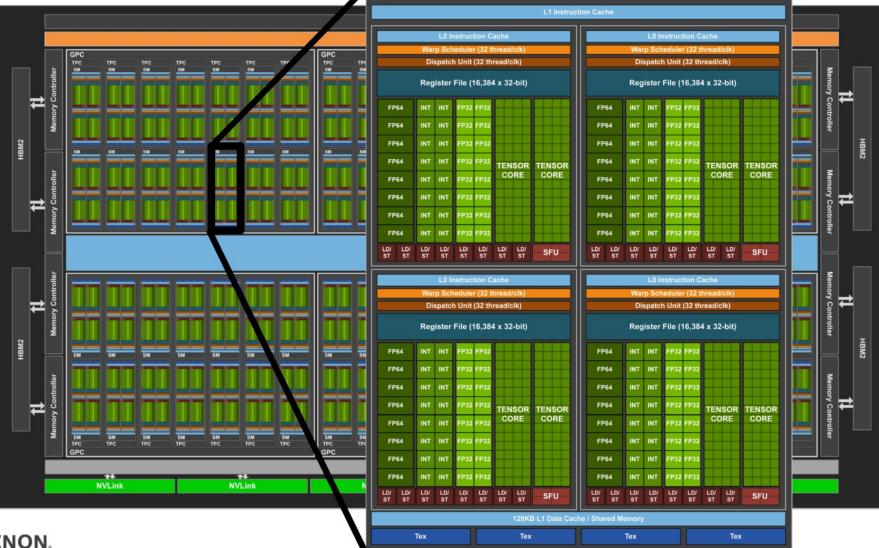


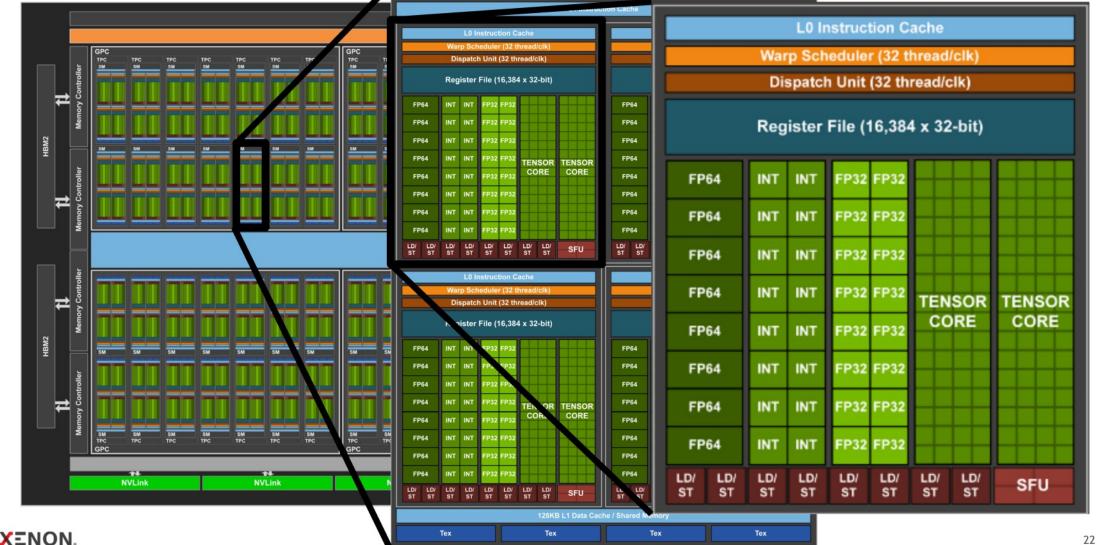
3X Faster on Deep Learning Training


CPU Server: Dual Xeon E5-2699 v4, 2.6GHz | GPU Servers add 8X Tesla K80, Tesla P100 or Tesla V100 | V100 measured on pre-production hardware | Workload: NMT, 13 epochs to solution.

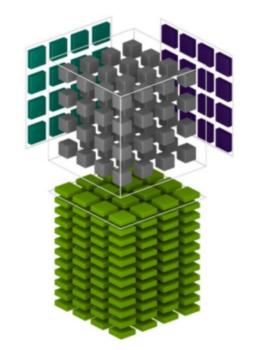
30X Higher Throughput than CPU Server on Deep Learning Inference

Workload: ResNet-50 | CPU: 2X Xeon E5-2660 v4, 2GHz | GPU: add 1X Tesla P100 or V100 at 150W | V100 measured on pre-production hardware.

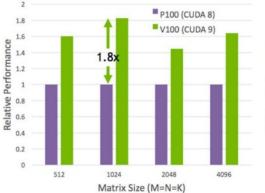

1.5X HPC Performance in One Year



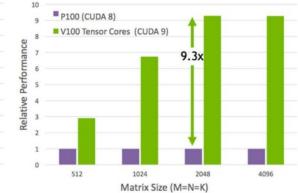
CPU System: 2X Xeon E5-2660 v4 @ 2GHz | GPU System: NVIDIA® Tesla® P100 or V100 at 150W | V100 measured on pre-production hardware | Workload: ResNet-50



High Performance Computing



PERFORMANCE COMPARISON

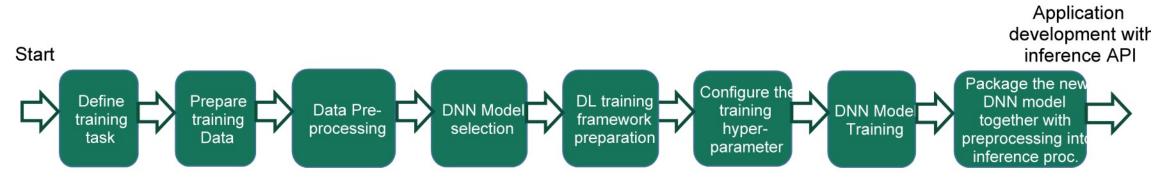

	Tesla K40	Tesla M40	Tesla P100	Tesla V100	
GPU	GK110 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)	
SMs	15	24	56	80	
TPCs	15	24	28	40	
FP32 Cores / SM	192	128	64	64	
FP32 Cores / GPU	2880	3072	3584	5120	
FP64 Cores / SM	64	4	32	32	
FP64 Cores / GPU	960	96	1792	2560	
Tensor Cores / SM	-	-	-	8	
Tensor Cores / GPU	-	-	-	640	
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1455 MHz	
Peak FP32 TFLOP/s*	5,04	6,8	10,6	15	
Peak FP64 TFLOP/s*	1,68	2,1	5,3	7,5	
Peak Tensor Core TFLOP/s*	-	-	-	120	
Texture Units	240	192	224	320	
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2	
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB	
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB	
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB	
Register File Size / SM	256 KB	256 KB	256 KB	256KB	
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB	
TDP	235 Watts	250 Watts	300 Watts	300 Watts	
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion	
GPU Die Size	551 mm²	601 mm ²	610 mm ²	815 mm ²	
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN	

cuBLAS Single Precision (FP32)

cuBLAS Mixed Precision (FP16 Input, FP32 compute)

IBM PowerAl Deep Learning Software Distribution

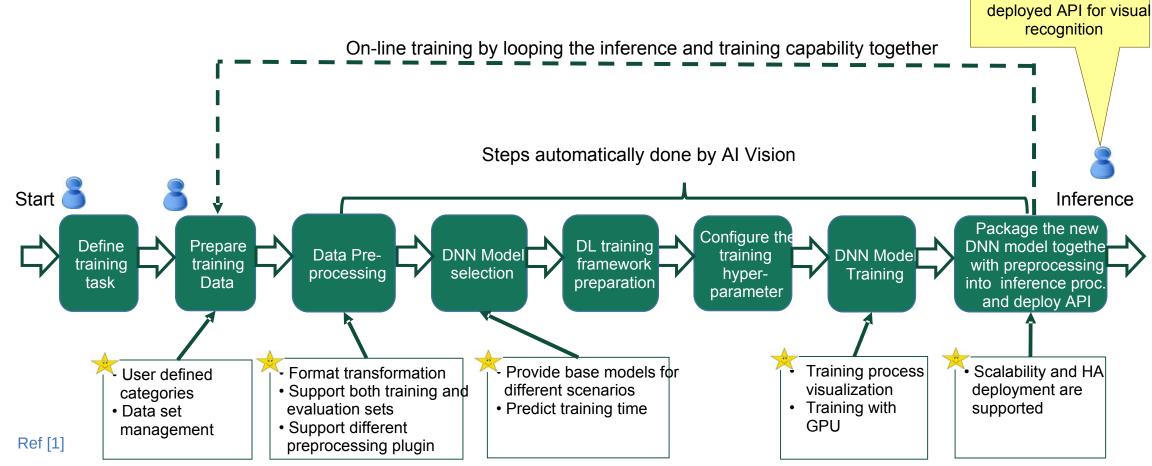
Deep Learning Frameworks	Caffe	NVCaffe		IBMCaffe		Torch
	TensorFlow	Distributed TensorFlow		Theano		Chainer
Supporting Libraries	OpenBLAS	Bazel		ributed unications	NCC	L DIGITS
Accelerated Servers and Infrastructure for Scaling	Cluster of NVLink Servers		High-S	Spectrum Scale: High-Speed Parallel File System		Scale to Cloud


PowerAI: Making AI More Accessible to Developers

- AI Vision: Targeted at Application Developers
 - Custom application development tool aimed at Computer Vision workloads
- Data Extraction, Transformation and Preparation tool using Apache Spark
 - Powered IBM Spectrum Conductor with Spark
- DL Insight: Automated Model Tuning
 - Automatically tune hyper-parameters for models based on input data set using Spark-based distributed computing
 - Powerful and intuitive GUI—based developer tools that provide continuous feedback to quickly create and optimize deep learning models
- Distributed Deep Learning
 - HPC Cluster enabled distributed deep learning frameworks
 - Accelerated training with auto-distribution using Spark & HPC technology (TensorFlow & Caffe)

Steps for Deep Learning Development

• Usually, developers need following steps to develop a DNN model and make it usable for applicati



Most of enterprises are facing the challenges ...

- No experience on DNN design and develop
- No experience on computer vision
- No experience on how to build a platform to support enterprise scale deep learning, including data preparation, training, and inference

Al Vision makes enterprise level DNN easier

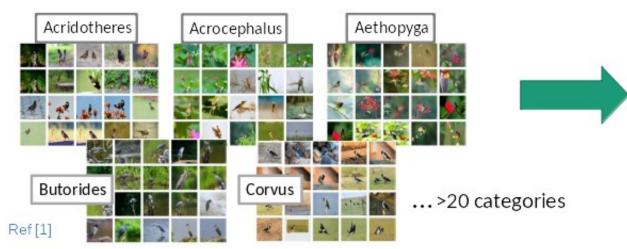
- Al Vision automates the deep learning development cycles for developers.
- Deep knowledges of ML/DL and computer vision have been embedded into Al Vision.

User could use the

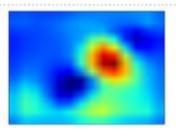
Image Classification example with Al Vision

I'm Aethopyga

I'm Pycnonotus

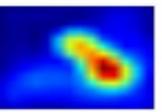

We nee model t profess

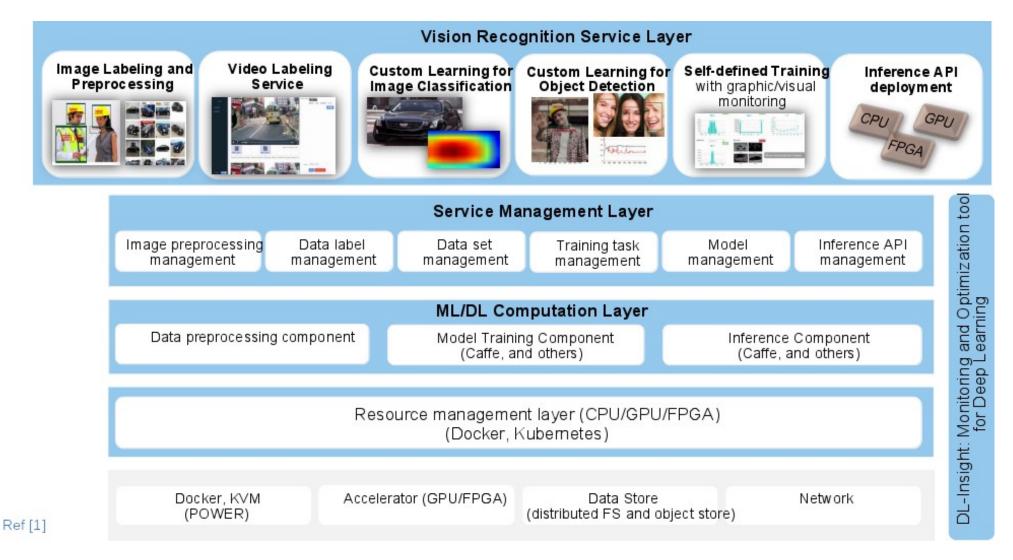
We need to get a new model to classify birds with professional knowledge.



Result on public cloud API : white, red, yellow and teal bird Result on public cloud API : white and black short beak bird

User defines categories in Al Vision




Aethopyga: 0.90708

Pycnonotus: 0. 99988

Al Vision The Deep Learning Development Platform for image/video analysis

CLOUD SOLUTIONS

Cloud

- CPU, GPU, FPGA instances
- IBM Bluemix
- HWaaS: IBM Softlayer
- DLaaS: Watson, "Tensorflow"aaS

Challenges

- Data locality
- Data sovereignty/privacy
- Network bandwidth
- Scaling performance
- GPU performance
- Software stack
- Cost

INFERENCE – USING DL MODELS

Deployment models

• Small, low power device on the edge e.g. mobile phone, CCTV camera, sensor, etc.

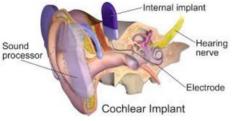
Cloud

- Device network connected
- "Phoning home": Transfer data to server
- Run data through network
- Analyze result and make decisions
- Send result/action back to device

Examples

Performance Comput

• Translation: e.g. iTranslate Converse



Embedded solutions

- Offload inference to edge device itself
- Required for off-line devices
- Faster response (avoids network latency)
- Sufficiently fast hardware required

Examples

- Autonomous cars
- In-phone Translator
- In-ear translator: e.g. Mymanu CLIK
- In-camera processing
- Cochlear implants: Machine Learning: "manual" implementation

SUMMARY

Workloads

- Dev and Test
- Training
- Inference

Technologies

- CPU
- GPU
- GPUs for DL (Tensor Cores), single prec., half prec.
- FPGA
- ASICS: TPU, etc.

On-premise

- GPU servers: IBM 822SL: Power8 + P100 + NVLINK
- PowerAl

Cloud

- CPU, GPU, FPGA instances
- HWaaS: Softlayer
- DLaaS: Watson, "Tensorflow"aaS

New Services

- Aivision
- DLInsight

Future

- CPU, GPU, FPGA instances
- Power9 + V100 + NVLINK2

Getting Started with IBM PowerAl

Visit the IBM Systems booth at the Tech Symposium to see a demo of IBM PowerAI Vision

- > Download and install PowerAI for free on your existing S822LC for HPC server : http://ibm.biz/powerai
- Don't have an S822LC for HPC?
 - POC/Test 2 x IBM Minsky's Available for Testing @ IBM Sydney Labs
- \blacktriangleright Videos to get started
 - Build a image classifier
 - http://www.youtube.com/watch?v=qHZRnswzqUI
 - \succ Train models to analyze videos for Advanced Driver Assistant System
 - http://www.youtube.com/watch?v=beL9GTi9jjs
- \succ Sample datasets
 - Download sample dataset for classifying breeds of dogs from stanford.edu

http://vision.stanford.edu/aditya86/ImageNetDogs/images.tar

Thank you!

Werner Scholz, 15 Aug. 2017 XENON Systems, CTO and Head of R&D werners@xenon.com.au

