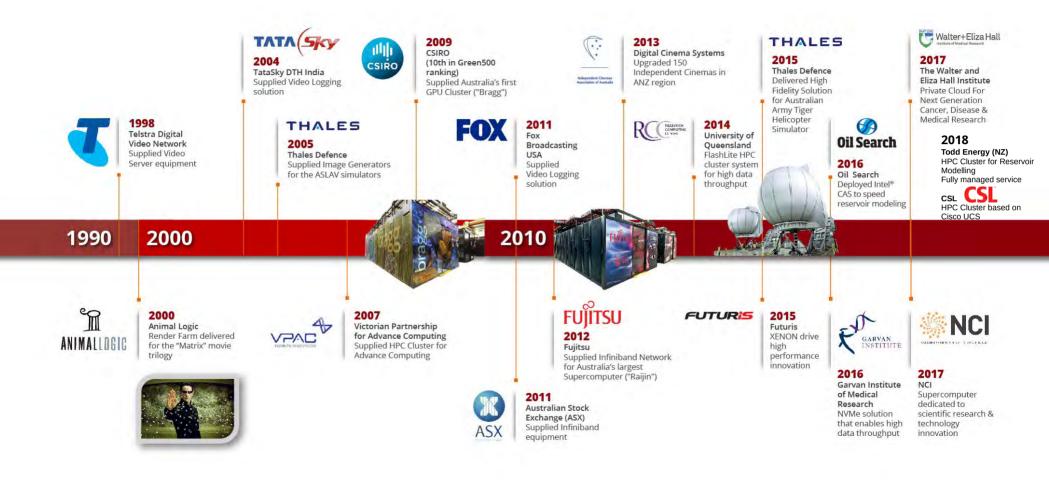
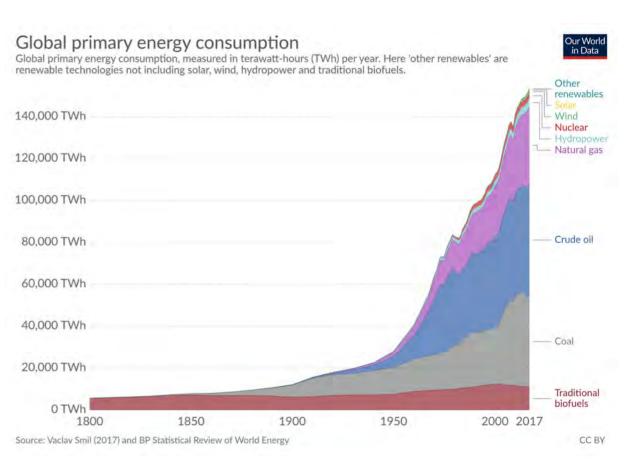
Liquid Cooling: Exceeding the Limits of Air Cooling to Unlock Greater Potential in High Performance Computing

27 Aug. 2019


Dr. Werner Scholz XENON Systems, CTO and Head of R&D werners@xenon.com.au

XENON Systems – Who We Are

XENON Systems – A History of High Performance Solutions



Why do we need to drive Data Centre Efficiency?

- Reduce power consumption
- Reduce fossil fuel consumption
- Reduce CO₂ emissions
- Reduce cost
- Save the planet

What is your motivation?

Refs:

https://www.theregister.co.uk/2016/07/25/semiconductor_industry_association_international_technology_roadmap_for_semiconductors/ http://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/

Why do we need to drive Data Centre Efficiency?

- Reduce power consumption
- Reduce fossil fuel consumption
- Reduce CO₂ emissions
- Reduce cost
- Save the planet

What is your motivation?

Some scenarios predict that computers will consume more power than the world can produce by 2040. (Semiconductor Industry Association Roadmap 2015)

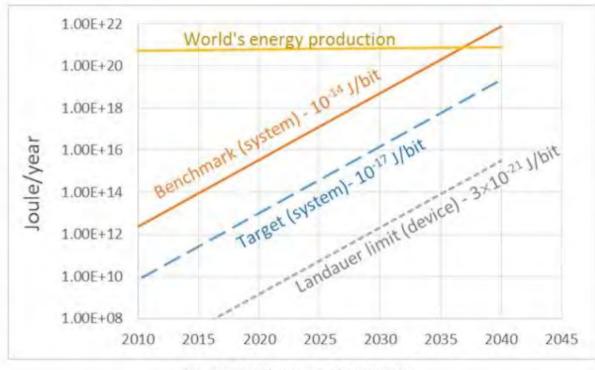
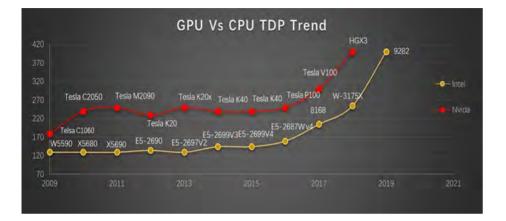


Fig. A8. Total energy of computing.

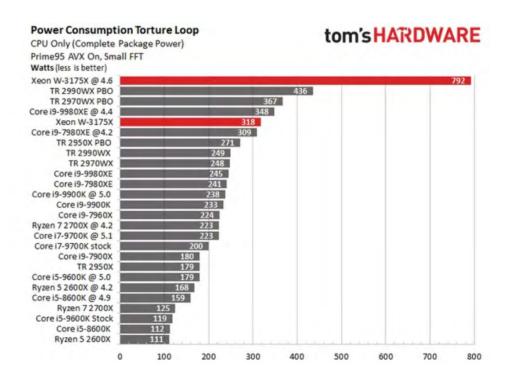
Refs:

https://www.theregister.co.uk/2016/07/25/semiconductor_industry_association_international_technology_roadmap_for_semiconductors/ http://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/

Component Trends and Demand are Challenging


42 Years of Microprocessor Trend Data 10 Transistors (thousands) 10⁶ Single-Thread 10⁵ Performance (SpecINT x 10³) 10^{4} Frequency (MHz) 10^{3} Typical Power 10^{2} (Watts) Number of 10 Logical Cores 100 1970 1980 1990 2000 2010 2020 Year

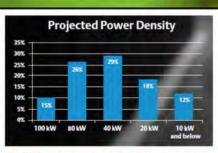
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp


- · Single thread performance increases are slowing
- Number of logical cores and transistors per socket is increasing
- · Power efficiency gains per core are slowing
- Power per socket is increasing

Component Trends and Demand are Challenging

- GPU: currently up to 300 W per device
- CPU:
 - Jumping from typ. 150 W to
 - 225 W (AMD EPYC 7742 with 64 cores)
 - 255 W (Intel[®] Xeon[®] W-3175X) and recently
 - 400 W (Intel Xeon 9282 "Cascade Lake AP" with 56 cores)
 - even higher for overclocked CPUs

7


Impact on Data Centres

Challenges:

· Power density/power per rack increases

Projected Rack Power Densities

- Power feeds
- Power distribution
- Power cost
- Hot spots
- DC/Rack/Component Cooling

70% of respondents think rack power will be at or above 40 kW by 2025!

Source: Emerson Network Power, "Data Center 2025" (800 respondents)

High Performance Computing

High rack power drives:

- Increased power distribution losses
- Increased air flow and power consumption
- Lower server inlet air temperatures and increased chiller power consumption

Data: average prices from 2011 converted at mean exchange rate for that year Sources; IEA, EIA, national electricity boards, OANDA shrinkthatfootprint.com

Refs:

11 PUE Data Center for the Masses A Webcast by The Green Grid.pdf https://www.thegreengrid.org/

Setting a Target: PUE = 1

PUE = Power Usage Effectiveness DCIE = Data Center Infrastructure Efficiency

PUE =Total Facility Energy
IT Equipment Energy=1+Non IT Facility Energy
IT Equipment Energy

DCIE = 1/PUE

https://gigaom.com/2012/03/26/whose-data-centers-are-more-efficient-facebooks-or-googles/ https://googleblog.blogspot.com/2012/03/measuring-to-improve-comprehensive-real.html https://www.datacenterknowledge.com/archives/2013/04/18/facebook-unveils-live-dashboard-on-pue-water-use https://www.google.com/about/datacenters/efficiency/internal/index.html#measuring-efficiency https://www.facebook.com/notes/facebook-engineering/designing-a-very-efficient-data-center/10150148003778920/ https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf

*) Live Facebook data centre dashboards https://www.facebook.com/PrinevilleDataCenter/app/399244020173259/ https://www.facebook.com/ForestCityDataCenter/app/288655784601722/ https://www.facebook.com/LuleaDataCenter/app/115276998849912/ https://www.facebook.com/AltoonaDataCenter/app/602730866540556/

Refs:

Data Centre	PUE
Google (2008)	1.21
Microsoft (2008)	1.22
Google (2010)	1.16
Facebook (2011)	1.08
Typical Data Centre (2011)	1.50
Microsoft (2012)	1.20
Google (2012)	1.14
Switch Supernap 7 (2015)	1.18
Facebook (Prineville 2015)	1.08
Allied Control (Bitfury 2015) (2PIC)	1.02
Green IT Cube (2016) (RDHX)	1.07
Supermicro (2017)	1.06
Facebook Prineville DC (yesterday*)	1.04
Facebook Forest City DC (yesterday*)	1.08
Facebook Lulea DC (yesterday*)	1.16
Facebook Altoona DC (yesterday*)	1.14

How to Drive Data Centre Efficiency Gains?

Some ideas:

- Improve Data Centre design
- Location selection (more on that later)
- Improve component selection (for efficiency)
- Improve component design (offload, BIGLittle)
- Develop smarter algorithms: Do more with less (but doing more with more is becoming cheaper faster...)
- Smarter load distribution: In-Server, In-Rack, In-DC (avoid hot spots)
- Improve Cooling Efficiency

Liquid Cooling Options for Every Situation

Liquid cooling includes a whole family of options

In-server

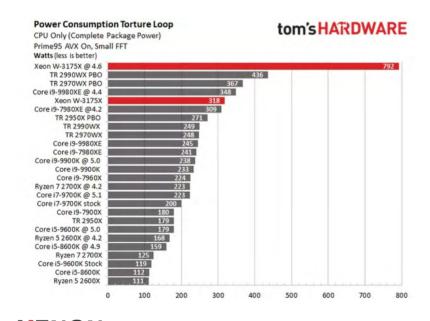
- Closed Loop Liquid Cooling
 - Actively pumped
 - Passive solutions
- Heat Pipe and Solid Conduction

In-rack

- LAAC (Liquid Assisted Air Cooling)
- Rear Door Heat Exchangers
- In-rack CDU

In-Data Centre

- Immersion Cooling
 - Single phase immersion
 - 2-phase immersion
 - "Full DC immersion"


In-server Closed Loop Liquid Cooling

Direct-to-chip liquid cooling enables

- Higher cooling efficiency
- Higher power CPUs/GPUs
- Higher density

High Performance Computing

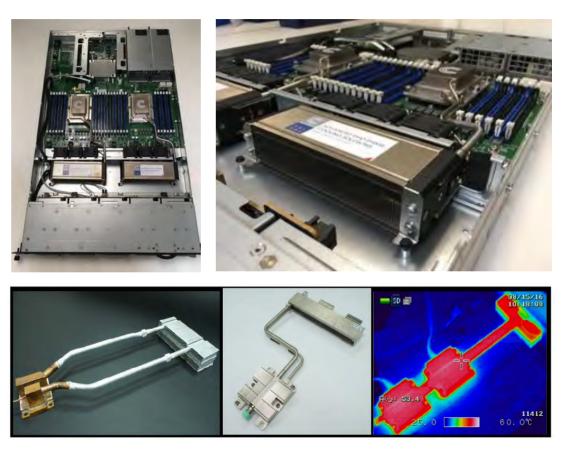
Higher performance (turbo/overclocking)

Specifications	Sp	be	ci	fi	ca	ti	0	n	s
----------------	----	----	----	----	----	----	---	---	---

MODEL XENON RADON Solo 1U RX991i 4Cores 5.2GHz HFT SERVER PERFORMANCE Overclocked up to 5.2GHz with 4Cores Active		XENON RADON Solo 1U RX993i 10Cores 5.0GHz HFT SERVER	XENON RADON Solo 1U RX998i 18Cores 4.8GHz HFT SERVER Overclocked up to 4.8GHz with 18Cores Active		
		Overclocked up to 5.0GHz with 10Cores Active			
PROCESSOR BASE FREQUENCY (CPU)	4.3GHz	3.3GHz	2.6GHz		
HYPER-SPEED FREQUENCY (CPU)	5.2GHz	5.0GHz	4.8GHz		
MEMORY BASE FREQUENCY (RAM)	2666MHz	2666MHz	2666MHz		
HYPER-SPEED FREQUENCY (RAM)	3200MHz	3200MHz	3200MHz		
CPU Single Intel® Core™ i7-7740X (Kaby Lake-X) 4Cores 8MB Cache 112W		Single Intel [®] Core [™] i9-7900X (Skylake-X) 10Cores 13.75MB L3 Cache 140W	Single Intel® Core™ i9-7980XE (Skylake-X 18Cores 24.75MB Cache 165W		

Refs:

https://www.tomshardware.com/reviews/intel-xeon-w-3175x-cpu,5976-3.html https://www.asetek.com/data-center/data-center-oem-partners/intel/


https://www.xenon.com.au/solutions/high-frequency-trading-solutions/

Passive In-Server Cooling

- 1) Passive closed loop liquid cooling
 - Cover longer distances (to condenser)
 - Larger condenser for better efficiency
 - Enables higher TDP

2) Heat Pipe and Solid Conduction

No active parts No risk of failure of active parts Fully sealed systems: no leakage

In-Rack Cooling

Rear Door Heat Exchangers

- "Hot aisle" confinement within rack
- Eliminates hotspots and "overcooling"
- Retrofit onto existing racks usually possible
- Easy installation
- "Zero U"
- Small space requirement (additional rack depth)

InRack LAAC ("Liquid Assisted Air Cooling")

- Rack-mounted 2U cabinet containing liquid-to-air (L2A) heat exchanger
- Capable of rejecting up to 6.4kW of total processor power
- Captures 60% to 80% of server heat with Asetek
 D2C cooling loops

InRackCDU, OnRackCDU

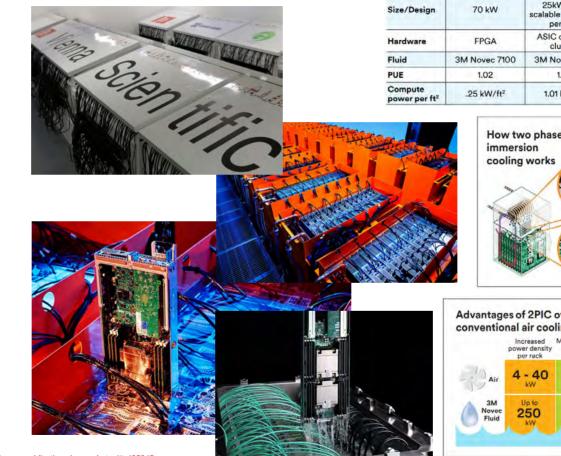
- Liquid-to-liquid (L2L) heat exchanger
- Rejects up to 80kW of heat from the rack
- Captures 60% to 80% of server heat with Asetek
 D2C cooling loops
- 2.5x-5x increases in rack density

Recent Project

OpenStack HPC Cluster

- Intel 0.5U server (2U 4N)
- Intel 2U servers for Ceph NVMe Storage
- Supermicro 1U server with 4x NVIDIA V100
- Water cooled CPUs and GPUs

	Air cooled	Liquid cooled
CPU LINPACK		
CPU1 temp	73 C	52 C
CPU2 temp	76 C	55 C
GPU LINPACK		
Performance (TFLOPS)	18.44	19.07
GPU power (typ.)	300 W	300 W
GPU power (max.)	375 W	379 W
GPU temp. (typ.)	50-60 C	40 C
GPU temp. (max.)	65 C	49 C

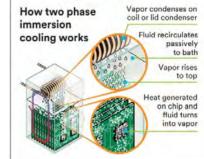

Immersion Cooling

1) Single phase immersion

- Reduced number/elimination of fans
- Data Centre temp. and humidity can increase (to comfortable levels)
- Data Centre noise level reduction
- Power reduction
- Cost reduction
- **Reliability increases**
- Fewer/no fans / fan failures
- Immersion cooling reduces corrosion risk, reduces failures, increases component life

2) 2-phase immersion

- Same as above
- Hermetically sealed enclosure
- Challenges with vapor management, servicing

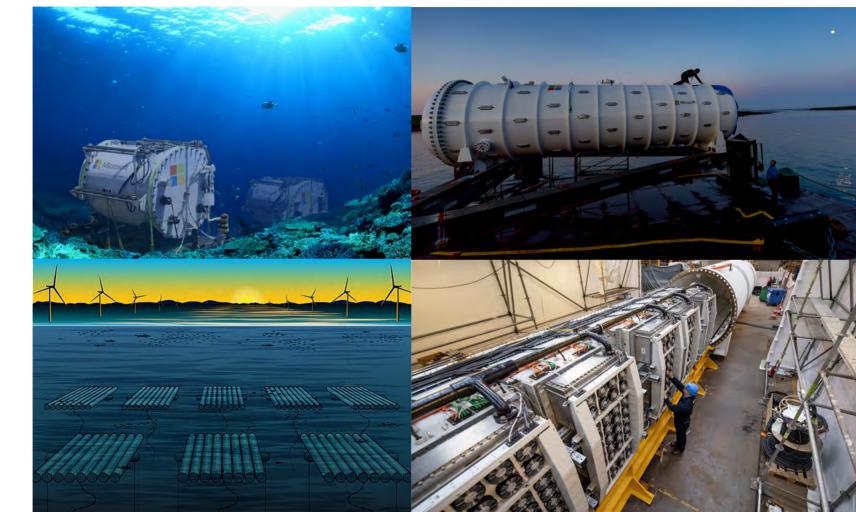


http://vsc.ac.at/presscorner/download-area-for-vsc-publications-logos-photos/#c495945 https://dua.com/dua-cool/ https://www.fujitsu.com/global/about/resources/news/press-releases/2018/1114-01.html http://multimedia.3m.com/mws/media/11279200/2-phase-immersion-coolinga-revolution-in-data-center-efficiency.pdf

Allied Control 2PIC Projects

-	Generation 1	Generation 2	Generation 3	
Date	November 2012	October 2013	October 2015	
Size/Design	70 kW	500kW 25kW racks scalable to 225kW per rack	40+ MW comprising 250 kW flat-lying tanks ASIC compute clusters	
Hardware	FPGA	ASIC compute clusters		
Fluid	d 3M Novec 7100 3M Novec 7100		3M Novec 7100	
PUE 1.02		1.02	1.02	
Compute power per ft ²	.25 kW/ft ²	1.01 kW/ft ²	3.23 kW/ft ²	

Advantages of 2PIC over conventional air cooling


"DC Immersion Cooling"

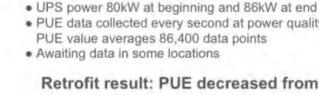
Microsoft Research Project "Natick"

- New DC deployment in 90 days
- Deploy close to urban centers (on coast)
- Free cooling
- Servicing challenges?

How to Further Drive DC Efficiency Gains

- Measure, measure, measure (power, PUE, load, temp., humidity)
- Improve Thresholds and Sensitivities
 - Increase DC temp. as much as possible
 - Increase humidity range as much as possible
- Improve DC design and airflow management
 - Optimize tile layout and cold air outlets to match IT load
 - Blanking plates and side panels
 - Barriers
 - CRAC unit return air inlet design
 - Hot and Cold aisle containment
 - Use free cooling (as climate permits)
 - Invest in CFD modelling (ROI could be <6 months)
 - Sensor lights to reduce light load
 - Reduce power conversion
 - Use high efficiency UPS

From a Google Case Study


PUE Improvements for 5 Network POPs

PUE Improvement	POP 1	POP 2	POP 3	POP 4	POP 5
Starting point	2.4	2.2	2.2	2.4	2.4
Implementing "immediate improvements"	2	2	2	2.2	2.2
Tightening cold aisle	1.9	1.8	1.8	2	2
Adding RA plenum to CRAC & 2 unit operation	1.7	1.7	1.7	1.7	1.7
Adding new controller	TBD	1.5	TBD	1.6	1.5

- · PUE data collected every second at power quality meters; daily PUE value averages 86,400 data points

Retrofit result: PUE decreased from 2.4 to 1.5

Google

Adding RA plenum to CRAC & 2 unit operation Adding new controller

Recommend thorough analysis of your site before implementing.

PUE Improvements and ROI Summary

2.4

2.2

17

1.5

2

PUE

· Cost does not include company manhours for work (i.e. installation of blanking plates) and CFD analysis.

Capital

(SUSD)

Investment

PUE

N/A

\$12,000

\$5,000

\$8,000

mprovement

N/A

0.2

0.2

0.3

0.2

Savings / Month

[Months]

N/A

9.7

2.7

6.5

N/A

\$1,238

\$1,238

\$1,858

\$1,238

(SUSD)

Simple payback ROI based on \$0.10 per kw-hr.

Return: \$67k/year in savings on \$25k retrofit

Google

US East Coast Data Center

Implementing "immediate improvements"

Tightening cold aisle

Starting point

Refs: Joe Kava, "Central Network Room (CNR) PU Efficiency Project - A True Story." 2011 Data Centre Efficiency Summit held on May 24 in Zürich, Switzerland, https://www.youtube.com/watch?v=APynRrGuZJA http://static.googleusercontent.com/media/www.google.com/en/us/corporate/datacenter/dc-best-practices-google.pdf

Conclusions

Benefits of Liquid Cooling

- Reduced number/elimination of fans and other air cooling components
- Data Centre temp. and humidity can increase (to comfortable levels)
- Data Centre noise level reduction
- Power reduction
- Cost reduction
- Higher power density systems and racks
- Performance increases (turbo/overclocking)
- Reliability increases
 - Fewer/no fans / fan failures
 - Immersion cooling reduces corrosion risk, reduces failures, increases component life

Integrated with careful Data Centre Design further gains can be made

Contacting XENON Systems

XENON Systems Pty Ltd

10 Westall Road Clayton South, VIC 3169 P +61 3 9549 1111 F +61 3 9549 1199 info@xenon.com.au www.xenon.com.au ABN: 39 074 339 316

Contact Details

Werner Scholz CTO and Head of R&D 03 9549 1140 werners@xenon.com.au

Michael Shing Business Development Manager 03 9549 1144 michaels@xenon.com.au

Thank you!

Questions?

Dr. Werner Scholz XENON Systems, CTO and Head of R&D werners@xenon.com.au

