

Learning from Industry Data Science Platforms

^{12th} Feb 2025

Adrian Torrie - Solution Architect

25+ Years where we come from...

2023

AGRF

Flash storage for genomics

2022

XENON Cloud

HPC-as-a-Service for HPC/AI, private & public cloud

2020

Monash University

HPC cluster & storage configured as shared cloud node for Australia Research Data Commons

2016

Garvan Institute of Medical Research

NVMe solution for medical research

2005

Thales Defence

Image Generators for ASLAV simulators

2023

Pawsey 130PB Archive Cluster

2021

Deakin University Design & deliver new HPC cluster for shared use

2020

Todd Energy

across Deakin

HPC cluster for oil & gas exploration

2015

Thales Defence

High fidelity solution for Australian Army Tiger helicopter simulators

2000

Animal Logic

Render Farm for "Matrix" movie trilogy

2023

PTT Thailand **HPC** Consulting

2021

Hong Kong Uni HPC HPC Cluster with XENON Cluster Stack

2019

Pawsey Supercomputing Centre

New GPU cluster

2014

RCC

FlashLite HPC cluster

202

Fujitsu Infiniband for Raijin Supercomputer

W WESTERN SYDNEY

Neuromorphic AI Cluster

murdoch children's

💶 🔳 research M ■ ■ institute

Murdoch Children's

Design and implement

Al solution for IVF, radiology,

Research Institute

backup solution

harrison.ai

Harrison.ai

healthcare

2018

2012

2023

WSU

2021

2022

Deakin University Clustered NVMe software defined storage for AI research

2021

XENON Cluster Stack

Containerised HPC management solution

2022

WEHI

Clustered flash storage for genomics, cryo-em

2020

CSL Limited

Services for HPC cluster implementation

2017

Supercomputer for scientific research & technology innovation

2009

CSIRO

Australia's first GPU Cluster

2017

WEHI

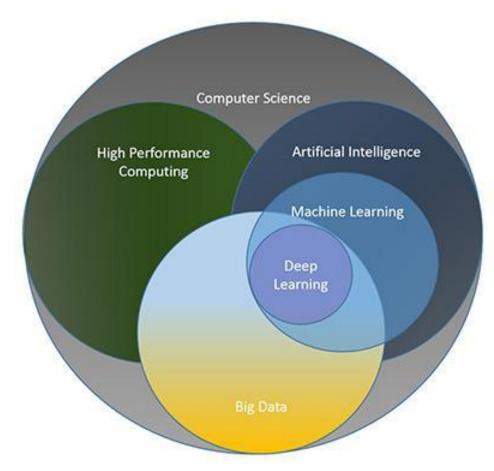
Private cloud for next generation cancer, disease & medical research

2007

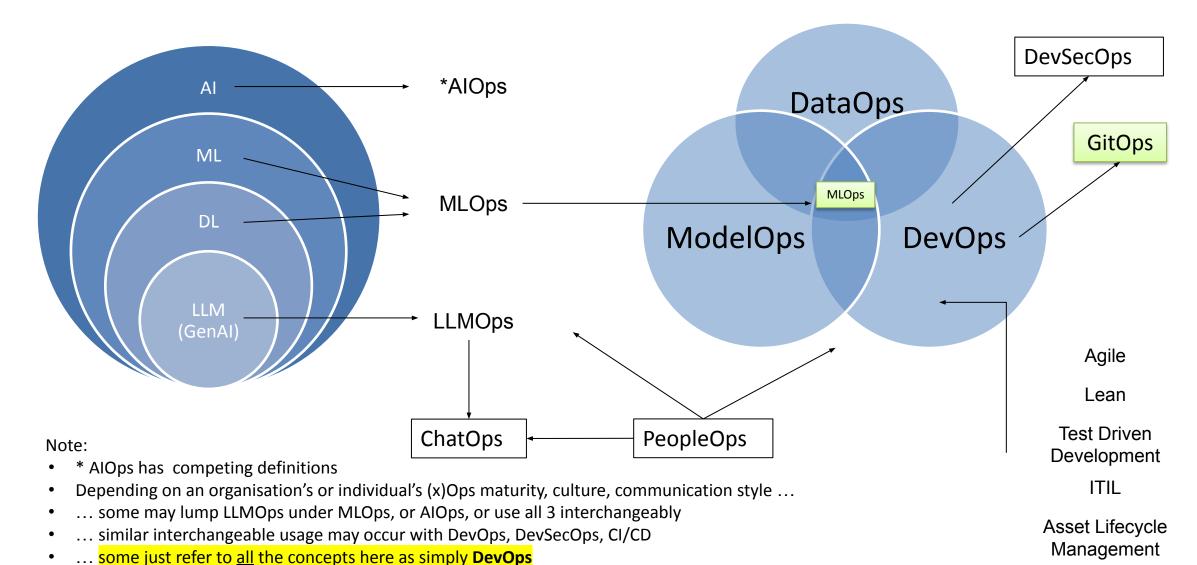
Victorian Partnership

for Advance Computing HPC Cluster for Advance Computing

Read the Case Studies



Introduction


- HPC and AI workload convergence
- Demystify and learn from container workflows, DevOps, MLOps, LLMOps, and Platform Engineering
- Can Kubernetes support:
 - Queuing and scheduling typical of HPC?
 - "Lift-and-shift" HPC jobs <u>onto</u> Kubernetes?
 - Ignoring microservices
- How do researchers access storage from Kubernetes?
- How does Kubernetes fit into a hybrid architecture encompassing cloud, on-prem, and IoT (lab devices)?
- How to adopt?

Source (Feb 2025): https://www.hpcadvisorycouncil.com/subgroups hpc ai.php

xOps – Buzzword Explosion

Evolution of Automation

Time

DevOps

SRE

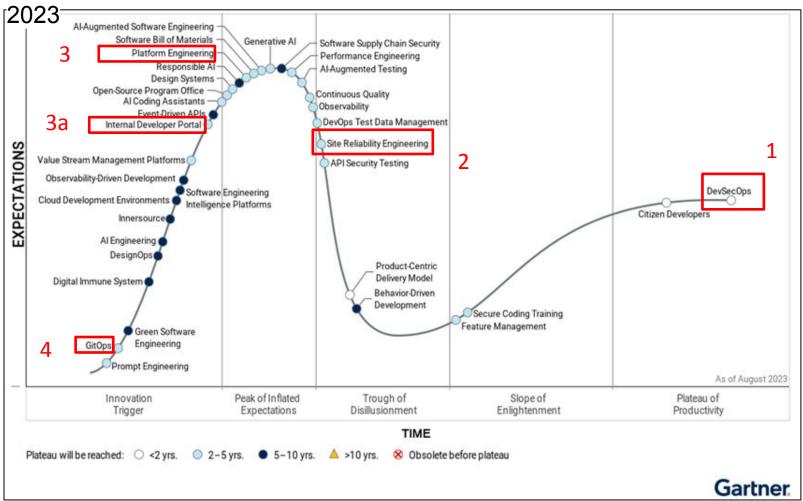
Platform Engineering

- Culture
- Practices
- Tools
- Shift-left / "Fail-fast"
- ☐ Tools are chosen with automation and security in mind

You build it, we run it

- Toil reduction
- Error budgets
- SLOs and SLIs
- Design for failure
- Think of SRE as an operating model for DevOps

We build it, we run it


- Reduce cognitive load
- "Golden path"
- Citizen Data Analyst
- Citizen Data Scientist
- Self-service delivery model of organisation capabilities

You build it, you run it

DevOps vs SRE vs Platform Engineering

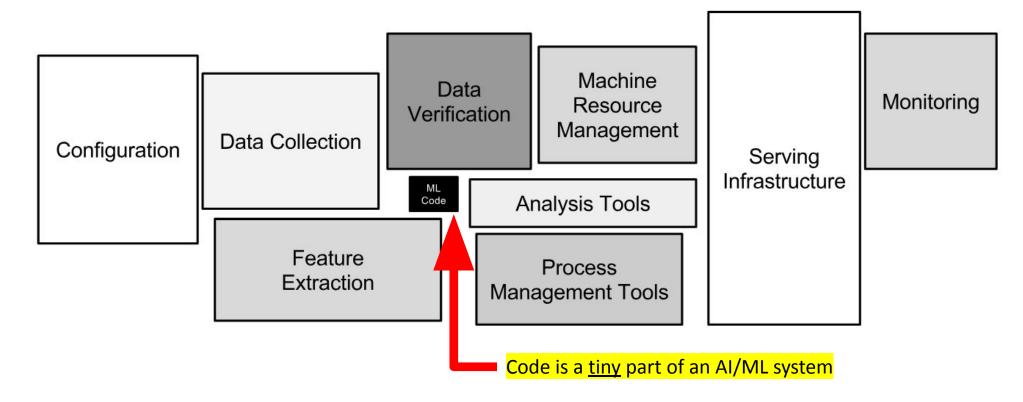
Gartner Hype Cycle for Software Engineering, November

- DevSecOps 1.
- 2. Site Reliability Engineering (SRE)
- 3. Platform Engineering
 - Internal Developer Portal (IDP)
- **GitOps** 4.

What's the difference?

Choose 1 only?

Choose all 4?


They're complimentary, use all 4.

Source (Feb 2025): https://www.gartner.com/

Why Platform Engineering is Important

Note: The size of each box shows the <u>respective size and importance</u> for a functional MLOps platform

Source (Feb 2025): Hidden Technical Debt in Machine Learning Systems

Principles and Standards

1. The Twelve-Factor App

I. Codebase

One codebase tracked in revision control, many deploys

II. Dependencies

Explicitly declare and isolate dependencies

III. Config

Store config in the environment

IV. Backing services

Treat backing services as attached resources

V. Build, release, run

Strictly separate build and run stages

VI. Processes

Execute the app as one or more stateless processes

VII. Port binding

Export services via port binding

VIII. Concurrency

Scale out via the process model

IX. Disposability

Maximize robustness with fast startup and graceful shutdown

X. Dev/prod parity

Keep development, staging, and production as similar as possible

XI. Logs

Treat logs as event streams

XII. Admin processes

Run admin/management tasks as one-off processes

2. Semantic Versioning 2.0.0 (SEMVER)

MAJOR.MINOR.PATCH, e.g. v3.2.8

- 1.MAJOR version when you make incompatible API changes
- 2.MINOR version when you add functionality in a backward compatible manner
- 3.PATCH version when you make backward compatible bug fixes

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

3. Open Container Initiative (OCI)

- Image Specification: Defines the structure and format of container images (e.g. Dockerfile).
- Runtime Specification: Specifies how a container should be executed and managed.
- Distribution Specification: Outlines standards for distributing container images.

Think in terms of OCI compliant images for "lift and shift" enablement

Al Platform

"Above the Line"

O PyTorch

Platform Customers

- Accessible by Customer Users (some)
- Accessible by Customer Admins (all)
- Administered by Customer Admins (all)
- Customised by Customer Admin (all)

Platform

- Administered by Platform Team (all)
- Customised by Platform Team (only)

- Administered by Platform Team (all, only)
- Customised by Platform Team (all, only)

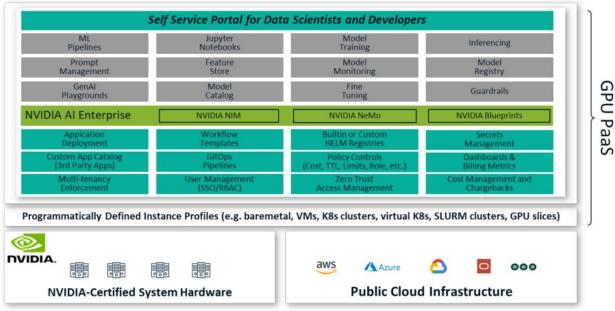
Hardware

Administered by Platform Team (some/all/only)

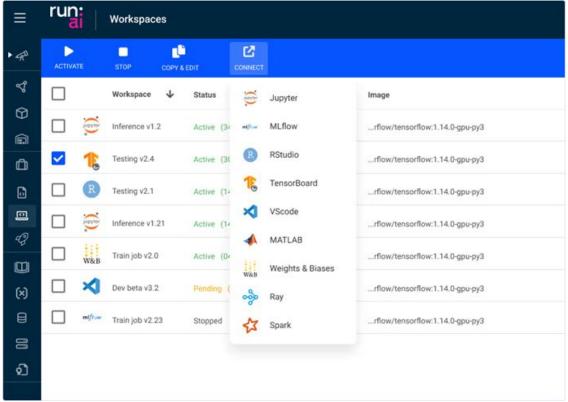
K8S Operators

• CNCF, Non-CNCF, Apache projects

 Administered by Platform Team (all, only) • Customised by Platform Team (all, only)


"Below the Line"

PaaS (I)

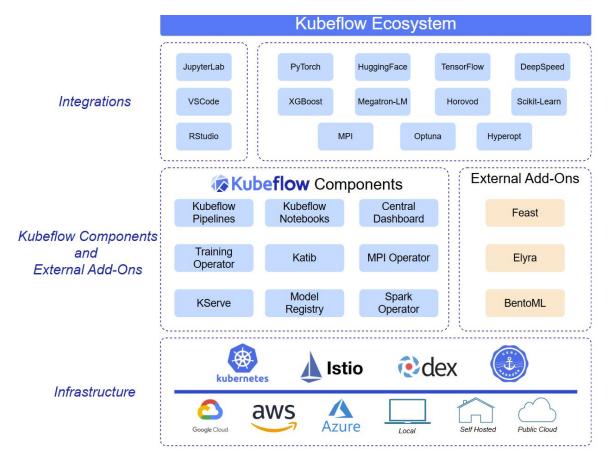

PaaS solutions can be used as a shortcut to building your platform

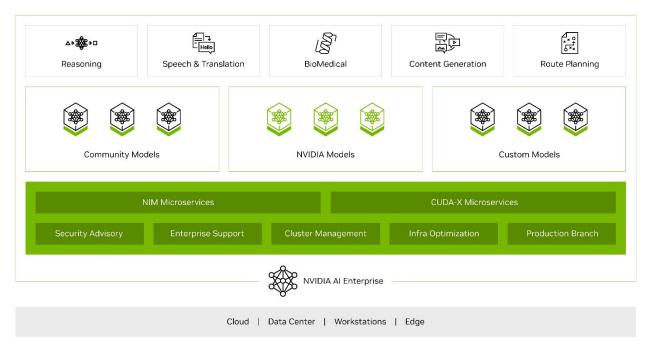
Rafay

PaaS Reference Architecture for GPU Clouds

Run:Al

Source (Feb 2025): Rafay Platform - GPU PaaS Reference Architecture for Nvidia Cloud Partners & Enterprises

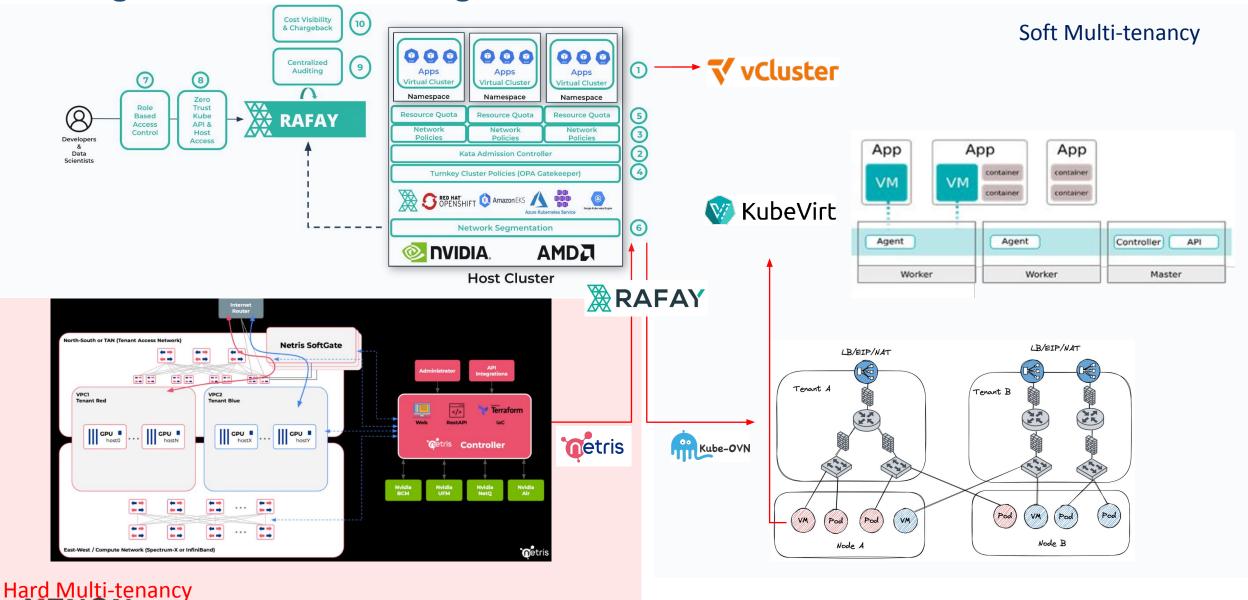

Source (Feb 2025): https://www.run.ai/


PaaS (II)

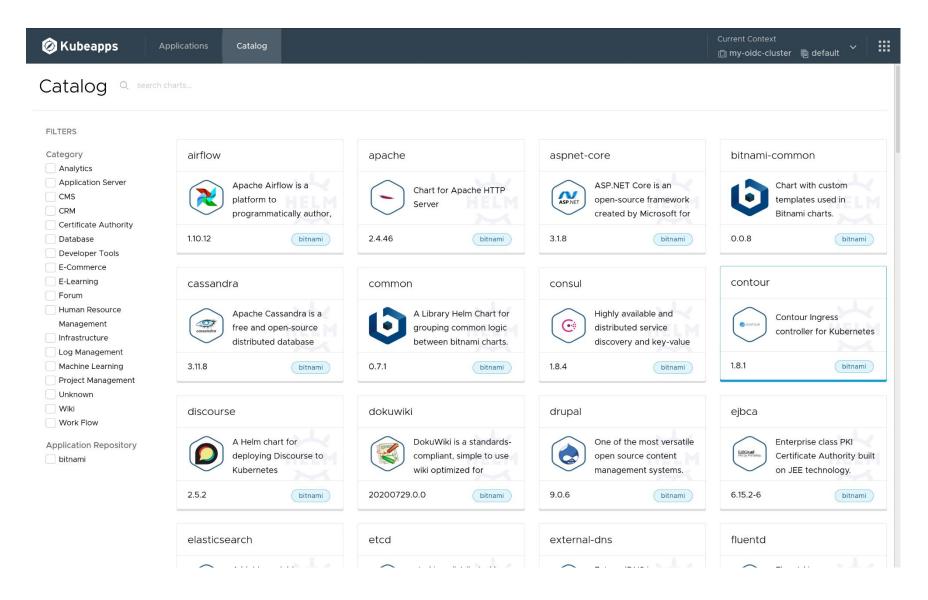
PaaS solutions can be used as a shortcut to building your platform

KubeFlow

NVIDIA AI Enterprise

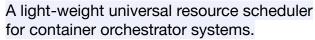

Source (Feb 2025): https://www.kubeflow.org/docs/started/architecture/

Source (Feb 2025): https://docs.nvidia.com/ai-enterprise/overview/latest/platform-overview.html



Next-gen Data Centre Management

High Performance Computing


App Catalogue

Batch Schedulers

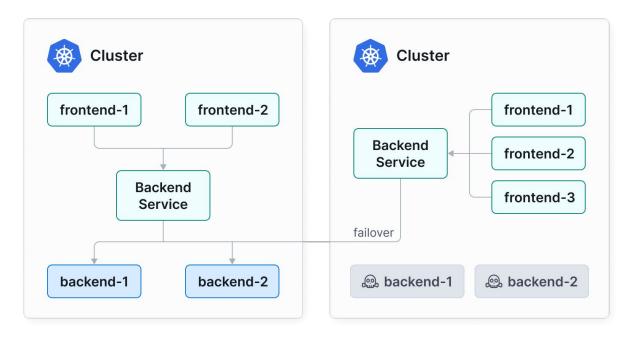
- App-aware scheduling
- Hierarchical queues
- Gang scheduling
- Job ordering & queuing
- Resource fairness
- Resource reservation
- Preemption
- Max application enforcement

Slinky = Slurm on Kuberntes

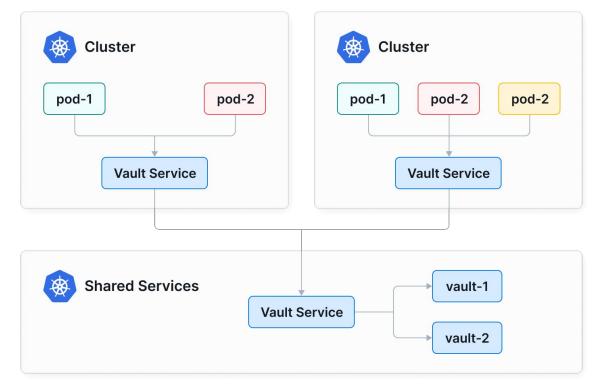
- Offering flexibility and ease of use for both HPC and cloud-native users
- Run and manage Slurm clusters on Kubernetes
- Manages the scaling of Slurm nodes within Kubernetes
- Job allocation/accounting/dependencies
- Fair-share, and priority scheduling
- "Lift-and-shift" potential for unified infrastructure

Batch Workloads

- MPI
- Pytorch
- Tensorflow
- Ray Clusters / Jobs / Services
- Spark
- Flink
- PaddlePaddle
- XGBoost
- JAX

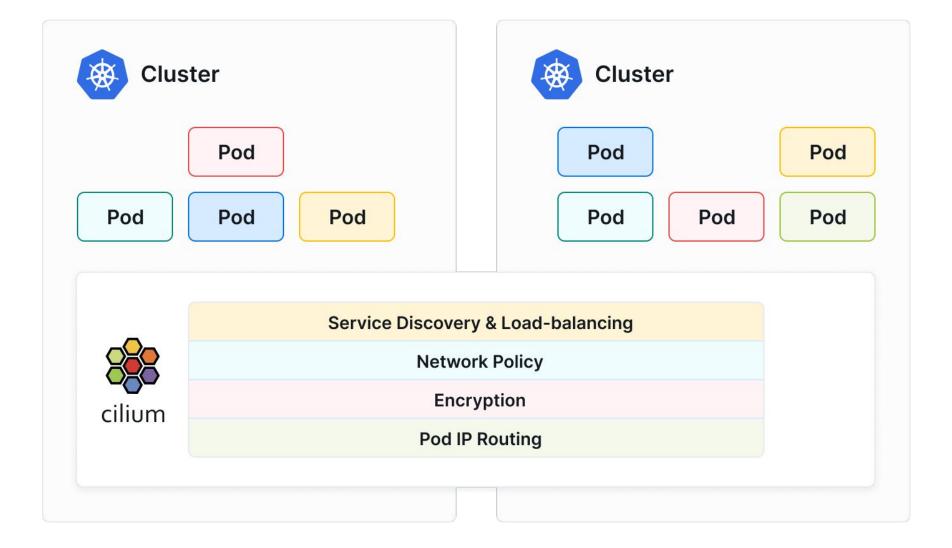


Cluster Mesh – Example Scenarios



..."an open source, cloud native solution for providing, securing, and observing network connectivity between workloads, fueled by the revolutionary Kernel technology eBPF."

High Availability and Fault Tolerance



Shared Services Across Clusters

Cluster Mesh – Uniform Network Policy Enforcement

IoT Edge Gateways and Devices

KubeEdge

Provides fundamental infrastructure support for network, app deployment and metadata synchronization between cloud and edge.

☐ Good for edge gateways

K3S

Kubernetes distribution built for IoT & Edge computing

- ☐ Good for lightweight vClusters
- Good for devices

Note: Cilium works on both distributions for cluster mesh scenarios

Storage

CSI Drivers

- NFS
- SMB
- Local file (on-node)
- Cloud hyperscalers

CSI Drivers for native integration with Vendor storage

HAMMERSPACE

Simple Adoption Idea – 1. POC

Objective

Prove the technology, i.e. batch jobs as containers on Kubernetes

Step 2 (Optional)

- **GPU Direct Storage**
- ✓ RDMA

Tips:

- Use a single node Kubernetes "cluster" (no VM) to simplify and focus on the objective
- Focus on a single Kubeflow Training Operator workload
- Test the Nvidia Network Operator once you have the job running

Simple Adoption Idea – 2. MVP

Objective

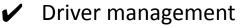
Prove scheduling workflows, understand additional job types

Gang scheduling

Fair use

Queues

Training Operator



Pytorch Jobs

Tensorflow Jobs

Spark Jobs

GPU in containers

✓ GPU Direct Storage

✓ RDMA

Simple Adoption Idea – 3. Scale-out Production

Production considerations

- HA/DR
- Tighter user access controls
- Secure Uls
- Certificates for securing traffic
- Multi-node
- Platform services

Other Tips

- 1. Leaky Tap Strategy
- 2. Blueprints and Deployment stamps
 - 1. Blueprints tend to refer to software stacks (Rafay and Nvidia use this term)
 - 2. Deployment stamps refer to Infrastructure as Code (IaC) Ansible and Pulumi
 - 3. Sometimes the lines are blurred between the two in cloud-native approaches
 - 4. Both are essentially templates that rely on configuration to stand-up resources (use config as code!)
- 3. Scaffold repos
 - 1. 1x functional repo per use case
 - 2. Standards embedded in repo design
 - 3. Configuration locations pre-defined and required to trigger DevOps processes
 - 4. Clone from to execute and learn, and modify to start new projects in a new repo
 - 5. Good to teach new users
 - 6. Fast way to learn for those new to Platform Engineering (even if you're a senior)
- 4. vClusters
 - 1. Give you access to blue-green deployment patterns for whole clusters
- 5. GitOps
 - 1. Tools provide access to blue-green deployment patterns for cluster resources
- 6. Reference architectures
 - 1. Azure MLOps v2, AWS, Nvidia, Xenon Al Sandpit

Connect with Xenon

XENON Systems Pty Ltd

10 Westall Road, Springvale, Victoria 3171, Australia

www.xenon.com.au

P +61 3 9549 1111

F +61 3 9549 1199

E info@xenon.com.au

A member of the XENON Technology Group www.xtq.com.au