Why do you need an Al-accelerated system?

by making use of Intel Xeon 6 processors as

the host CPU of choice.

As predictive Al, generative Al (GenAl), and high-performance computing (HPC) workloads grow in complexity, their performance and energy-efficiency requirements likewise grow. One approach for achieving an optimal balance of performance and total cost of ownership (TCO) for these workloads is to design an Al-accelerated system using a host CPU and discrete Al accelerators.

In an Al-accelerated system, the host CPU optimizes processing performance and resource utilization by delivering efficient task management and high-performance preprocessing—two factors critical for ensuring that model training pipelines stay well fed and that discrete AI processors are kept running at optimal utilization levels.

Intel Xeon 6 processors with Performance-cores (P-cores) are ideal

host CPUs. Serving as the brain of an Al-accelerated system, the host CPU performs a wide variety of management, optimization, preprocessing, processing, and offloading tasks to facilitate system performance and efficiency. GPUs and Intel® Gaudi® AI accelerators provide a system's

high-powered muscles. These discrete AI accelerators dedicate their parallel-processing capabilities to large language model (LLM) training for GenAI and to model training for predictive AI.

Why choose Intel Xeon 6 processors as host CPUs?

Intel Xeon processors are the host CPUs of choice for the world's most powerful Al accelerator platforms, being the most benchmarked host processors for these systems.¹

Here are five more reasons to choose Intel Xeon 6 processors as your host CPUs for Al-accelerated systems.

Superior I/O performance

Higher input/output (I/O) bandwidth accelerates data offloads and elevates operational efficiency.

20 percent more PCIe lanes than the previous generation (up to 192 PCIe 5.0 lanes per processor).

Boost I/O bandwidth with up to

Higher core counts and single-threaded performance Higher CPU core counts and single-threaded

performance translate into faster data feeds for GPUs/accelerators, which helps shorten models' time-to-train. High max turbo processor frequencies boost single-threaded CPU performance.

128 P-cores per CPU deliver 2x more cores per socket than the previous generation.

Upto

Higher memory bandwidth and capacity Intel Xeon 6 is the first processor family to introduce Multiplexed Rank DIMMs

(MRDIMMs). This innovative memory technology boosts bandwidth, performance, and latency for memory-bound AI and HPC workloads. Intel Xeon 6 processors support (2) DIMMs per memory channel, enabling large memory capacities which are important for AI systems that need to support ever increasing AI model sizes and data sets. Intel Xeon 6 processors feature up to 504 MB L3 cache, combined with support

maintains memory coherency between the CPU memory space and memory on attached devices. Dedicated RAS support

from Compute Express Link (CXL). CXL

bandwidth compared to the previous generation.² CXL enables

high-performance

MRDIMMs deliver

up to 2.3x higher memory

resource sharing, reduced software stack complexity, and lower overall system cost.

Intel's industry-leading reliability, availability, and serviceability (RAS) support reduces costly downtime for large AI/HPC systems.

Advanced management capabilities include telemetry, platform monitoring, control over shared resources, and real-time firmware updates. RAS benefits from the collective expertise of platform partners, ISVs, and solution integrators. Flexibility for mixed workloads

and operational efficiency.

Intel® Advanced Matrix Extensions

(Intel® AMX) includes

newly added support

for FP16 precision arithmetic to

Minimize business disruptions

with Intel Xeon 6 processors,

built to maximize uptime

support a wide variety of workloads as host CPUs, delivering both performance and efficiency. In some cases, host CPUs in

Al systems might need to support limited

Intel Xeon 6 processors are designed to

Al functionality during the data preprocessing phase.

support data preprocessing and other host CPU responsibilities in Al-accelerated systems. Learn about additional benefits that Intel Xeon 6 processors can deliver

See how Intel Xeon 6 processors enhance AI/HPC workloads. Examine the latest workload performance metrics: https://edc.intel.com/content/www/us/en/products/performance/benchmarks/intel-xeon-6/.

as the host CPU of choice for AI-accelerated systems:

intel.com/content/www/us/en/products/details/processors/xeon.html.

Review product specifications and find the best processor for your unique computing needs: https://ark.intel.com/content/www/us/en/ark/products/series/595/intel-xeon-processors.html.

X=NON_® inte

High Performance Computing

XENON Systems is an Intel® Authorized Systems Integrator.

¹Based on MLPerf benchmark testing as of 2024. For details, visit https://mlcommons.org/. ² Based on Intel analysis as of May 2024. **Baseline:** 1-node, 2 x Intel Xeon Platinum 8592+ processors, 64 cores, Intel® Hyper-Threading Technology (Intel® HT Technology) on, Intel® Turbo Boost Technology on, NUMA configuration SNC2, 1,024 GB total memory (16 x 64 GB DDR5 5,600 megatransfers per second [MT/s]), BIOS version 3B07.TEL2P1, microcode 0x21000200, Ubuntu 24.04, Linux version 6.8.0-31-generic, tested by Intel as of May 2024. New: 1-node, pre-production platform, 2 x Intel Xeon 6 processors with P-cores, Intel HT Technology on, Intel Turbo Boost Technology on, NUMA configuration SNC3, 3,072 GB total memory (24 x 128 GB MCR 8,800 MT/s), BIOS version BHSDCRB1.IPC.0031.D97.2404192148, microcode 0x81000200, Ubuntu 23.10, kernel

version 6.5.0-28-generic. Software: NEMO v4.2.2. ORCA025 dataset from CMCC. Intel® Fortran Compiler Classic and Intel® MPI from 2024.1; Intel® oneAPI HPC Toolkit. Compiler flags "-i4-r8-O3-xCORE-AVX2-fno-alias-fp-model fast=2-align array64byte-fimf-use-svml=true."

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for additional details. No product or component can be absolutely secure. Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation. © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. Printed in USA 1224/DR/PRW/PDF Please Recycle 363270-001US

Performance varies by use, configuration and other factors. Learn more at www.lntel.com/PerformanceIndex.